3D Cell Co-culture System on Hydrogel Micro-Patterned Surface Fabricated by Photolithography
نویسندگان
چکیده
منابع مشابه
Patterned hydrogel substrates for cell culture with electrohydrodynamic jet printing.
Cells respond to and are directed by physiochemical cues in their microenvironment, including geometry and substrate stiffness. The development of substrates for cell culture with precisely controlled physiochemical characteristics has the potential to advance the understanding of cell biology considerably. In this communication, E-jet printing is introduced as a method for creating high-resolu...
متن کامل3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-b...
متن کاملMicro-patterned Polystyrene Substrates for Highly Integrated Microfluidic Cell Culture
Adherent mammalian cells dynamically interact with their extracellular matrix (ECM) and culture substrate. To accommodate this sensitivity, standard culture techniques typically utilize tissue culture polystyrene (TCPS), a treated polystyrene substrate that promotes cell attachment. However, TCPS cannot be easily integrated into microfluidic devices as it is incompatible with conventional fabri...
متن کامل3d Cell Culture Using Monodisperse Peptide Hydrogel Beads
We describe a three-dimensional (3D) cell culture system using monodisperse peptide hydrogel beads. We utilized a self-assembling peptide hydrogel to provide cells in vivo-like microenvironment. We succeeded in encapsulating endothelial cells within the hydrogels by using a 3D microfluidic axisymmetric flow-focusing device (AFFD), and showed the encapsulated endothelial cells were viable and we...
متن کاملA Patterned 3D Silicon Anode Fabricated by Electrodeposition on a VirusStructured Current Collector
r s a T a a Electrochemical methods were developed for the deposition of nanosilicon onto a 3D virus-structured nickel current collector. This nickel current collector is composed of self-assembled nanowire-like rods of genetically modifi ed tobacco mosaic virus (TMV1cys), chemically coated in nickel to create a complex high surface area conductive substrate. The electrochemically deposited 3D ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Photopolymer Science and Technology
سال: 2012
ISSN: 0914-9244,1349-6336
DOI: 10.2494/photopolymer.25.47